Box your final answer. No calculators or phones. Keep your quiz until the end.

Name and section: \qquad

1. (5 points) Which of the following sets of vectors in \mathbb{R}^{3} contain two linearly independent vectors but no more?

$$
\left\{\left[\begin{array}{c}
0 \\
8 \\
-6
\end{array}\right],\left[\begin{array}{c}
0 \\
-11 \\
9
\end{array}\right]\right\},\left\{\left[\begin{array}{c}
0 \\
8 \\
-6
\end{array}\right],\left[\begin{array}{c}
0 \\
-12 \\
9
\end{array}\right]\right\},\left\{\left[\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right],\left[\begin{array}{c}
0 \\
8 \\
-6
\end{array}\right],\left[\begin{array}{c}
-3 \\
3 \\
-4
\end{array}\right]\right\}
$$

2. (5 points) Does $\left[\begin{array}{c}4 \\ -3 \\ 5\end{array}\right]$ lie in the span of $\left[\begin{array}{c}2 \\ -5 \\ -3\end{array}\right]$ and $\left[\begin{array}{c}-7 \\ 12 \\ -5\end{array}\right]$? Deduce whether or not the system

$$
\begin{aligned}
2 x_{1}-7 x_{2} & =4 \\
-5 x_{1}+12 x_{2} & =-3 \\
-3 x_{1}-5 x_{2} & =5
\end{aligned}
$$

has a solution.

